STPM/S(E)964

PEPERIKSAAN SIJIL TINGGI PERSEKOLAHAN MALAYSIA (MALAYSIA HIGHER SCHOOL CERTIFICATE)

BIOLOGY

Syllabus

Second Edition

This syllabus applies for the 2001 examination and thereafter until further notice. Teachers/candidates are advised to contact Majlis Peperiksaan Malaysia for the latest information about the syllabus.

MAJLIS PEPERIKSAAN MALAYSIA (MALAYSIAN EXAMINATION COUNCIL) ISBN 983-2321-22-0

© Majlis Peperiksaan Malaysia 2002 First Published (Second Edition) 2002 Reprinted 2003

All rights reserved.

MAJLIS PEPERIKSAAN MALAYSIA

(MALAYSIAN EXAMINATION COUNCIL) Bangunan MPM, Persiaran 1 Bandar Baru Selayang 68100 Batu Caves Selangor Darul Ehsan

> Telephone: 03-61369663 Facsimile: 03-61361488 E-mail: ceo<u>@mpm.edu.my</u> Website: www.mpm.edu.my

Printed by: PERCETAKAN WARNI SDN BHD No 46 & 48, Lorong Perusahaan 4 Kimpal Industrial Park 68100 Batu Caves, Selangor Darul Ehsan Tel: 03-61882666 (4 lines) Fax: 03-61841402

FALSAFAH PENDIDIKAN KEBANGSAAN

Pendidikan di Malaysia ialah suatu usaha yang berterusan ke arah memperkembang potensi individu secara menyeluruh bersepadu untuk melahirkan insan yang seimbang dan dan bersepadu dan harmonis dari segi intelek, rohani, emosi, dan jasmani berdasarkan kepercayaan dan kepatuhan kepada Tuhan. Usaha ini bertujuan untuk melahirkan warganegara Malaysia yang berilmu pengetahuan, berketrampilan, berakhlak mulia, bertanggungjawab, dan berkeupayaan mencapai kesejahteraan diri serta memberikan sumbangan terhadap keharmonian dan kemakmuran keluarga, masyarakat, dan negara.

CONTENTS

		Page
Aims		1
Objective	S	1
Elementa	ry Knowledge	1
Content		
А.	THE BIOLOGY OF MOLECULES AND CELLS	2
B.	ENERGETICS	6
C.	GASEOUS EXCHANGE, TRANSPORT, AND HOMEOSTASIS	7
D.	CONTROL AND COORDINATION	9
E.	IMMUNE SYSTEM	11
F.	REPRODUCTION, DEVELOPMENT, AND GROWTH	11
G.	GENETICS	13
H.	TAXONOMY, BIODIVERSITY, AND THEORY OF EVOLUTION	18
I.	ECOLOGY	22
Parctical	Syllabus	23
Form of E	Examination	24
Reference	Books	24

964 BIOLOGY

Aims

This syllabus aims to enhance students' knowledge and understanding of biology to enable them to further their studies at institutions of higher learning or to assist them to embark on related careers, and also to promote awareness among them of the role of biology in the universe.

Objectives

The objectives of this syllabus are to enable students to

- 1. know and use biological facts and principles;
- 2. interpret, synthesise, and evaluate biological information;
- 3. analyse, evaluate, and to deal with information and ideas logically and critically;
- 4. plan and carry out experiments scientifically and make deductions;
- 5. handle biological materials correctly and safely;
- 6. develop proper attitudes and values on social, technological, and environmental issues related to current biology.

Elementary Knowledge

Modern biology cannot effectively be studied without some understanding of the underlying physicochemical principles. Candidates will therefore be expected to have an elementary knowledge of the topics set out below.

The electromagnetic spectrum

Energy concepts (laws of thermodynamics, potential energy, activation energy, chemical bond energy)

Ions, molecules, acids, bases, pH, buffers

Isotopes - stable and radioactive

The colloidal state

Oxidation, reduction, electron transfer, and hydrogen transfer

Hydrolysis, condensation, phosphorylation, decarboxylation, deamination, transamination

Large areas of genetics and ecology rely on statistical methods. Candidates will need the elementary knowledge of the topics listed below. Questions on genetics and ecology which involve the use of these concepts may be set.

Mean, mode, and median

Standard deviation and standard error

 χ^2 -test

Histograms and pie charts

Normal distribution and bimodal distribution curves

Content

1.

1.1

A. THE BIOLOGY OF MOLECULES AND CELLS

	Topic		Explanatory notes
Basic	chemistry of a cell (15 periods)		
Physic physic	cal and chemical properties and blogical role		
1.1.1	Water		
	Its important properties as a constituent and medium for life	_	Polarity, cohesiveness, density, surface tension, specific heat capacity, latent heat of vaporisation, and hydrogen bonding
1.1.2	Carbohydrates		
	Monosaccharides: trioses, pentoses, hexoses		Reducing and non-reducing sugars Aldehyde and ketone groups Structure of triose (glyceraldehyde), pentose ring (ribose and deoxyribose), hexose ring (glucose)
	Disaccharides: maltose, sucrose, lactose	_	Glycosidic bond
	Polysaccharides: starch, cellulose, glycogen	_	Polymerisation process (formation of starch and cellulose)
1.1.3	Lipids		
	Triglycerides: fatty acids and glycerol	_	Saturated fatty acids (stearic acid) and unsaturated fatty acids (oleic acid) Ester bond and esterification process
	Phospholipids	_	Structure of lecithin and its importance in cell membrane structure
	Steroids	_	Structure of cholesterol and its importance in health
		_	Steroid drug abuse
1.1.4	Proteins		
	Amino acids	_	Basic structure
		_	Types based on side chain, polar (serine), non- polar (glycine), acidic (aspartic acid), and basic (lysine)
		_	Peptide bond and polymerisation process

		Levels of structure	 Primary, secondary, tertiary, and quarternary structures with examples Bonding involved in the formation of proteins
		Conjugated proteins	- Fibrous and globular proteins with examples
		Properties of proteins	Amphoteric, buffer, and colloidFactors causing denaturation of proteins
	1.1.5	Nucleic acids	 Nucleotide structure Phosphodiester bond in the formation of polynucleotide Watson and Crick's model of DNA structure Types of RNA: mRNA, rRNA, tRNA Differences between DNA and RNA
	1.1.6	Other biomolecules: ions and vitamins	 Examples and importance
1.2	Move	ment of substances through membrane	
	1.2.1	 Passive transport (i) Diffusion (ii) Facilitated diffusion (iii) Osmosis and water potential 	 Definition and examples in living cells Process Mechanism of action Process Calculations
	1.2.2	Active transport	– Definition and mechanism with examples
	1.2.3	Endocytosis (pinocytosis and phagocytosis)	 Process and examples
	1.2.4	Exocytosis	 Process and examples
1.3	Techn	iques of analysis	- Basic principles only
	1.3.1	Chromatography	 Examples of uses in the analysis of proteins and plant pigments
	1.3.2	Electrophoresis	- Examples of uses in the analysis of proteins
	1.3.3	X-ray diffraction	 Examples of uses in the determination of protein and DNA structures
2	Struc	ture of cells and organelles (14 perio	ds)

2.1	Prokaryotic cells	 Differences between prokaryotic and eukaryotic cells

	2.2.1	Plant o	cells	_	Differences between plant and animal cells
	2.2.2	Anima	al cells		
2.3	Cellul	ar com	ponents		
	2.3.1	Memb cytopl	orane, cell wall, and asm	_	Structure and functions of membrane based on the fluid-mosaic model of Singer
	2.3.2	Organ	elles	_	Structure, functions, and distribution
		(i)	Nucleus: nucleolus, chromosomes, nucleoplasm, and nuclear membrane	_	Organisation of chromosomes
		(ii)	Rough and smooth endoplasmic reticulum		
		(iii)	Mitochondria		
		(iv)	Golgi apparatus		
		(v)	Lysosomes	_	Process of lysosome action
		(vi)	Ribosomes		
		(vii)	Chloroplasts	_	Chloroplast of higher plants only
		(viii)	Centrioles		
		(ix)	Microtubules		
		(x)	Microfilaments		
		(xi)	Vacuoles		
2.4	Specia	alised c	ells	_	Structure, functions, and distribution
	2.4.1	Plant o	cells	_	Detailed description
		(i)	Meristem		
		(ii)	Parenchyma		
		(iii)	Collenchyma		
		(iv)	Sclerenchyma		
		(v)	Xylem, including tracheids and vessels		
		(vi)	Phloem, including companion cells and sieve tubes		
	2.4.2	Anima	al cells	_	Definition, structure, functions, and distribution
		(i)	Epithelium: squamous, cuboidal, and columnar	_	Simple and stratified types Formation of endocrine and exocrine glands
		(ii)	Nerves	_	General structure of neurons (sensory, interneuron, and motor)

- Structure of eukaryotic cells as seen under the electron microscope

2.2

Generalised eukaryotic cells

		(iii)	Muscles: smooth, striated, and cardiac	_	Differences between muscle types Structure of striated muscles as seen under the
		(iv)	Bone, cartilage, and blood	_	Compact bone, hyaline cartilage, erythrocytes, and leucocytes
,	2.5	Analytical to	echniques	_	Basic principles only
		2.5.1 Ultra	centrifugation	-	Examples of uses in the isolation of cellular components
		2.5.2 Micro	oscopy: light and electron	-	Phase-contrast microscopes, transmission and scanning electron microscopes, and examples of their uses
•	3.	Control in o	cells (7 periods)		
-	3.1	Enzymes		_	Definition and properties of enzymes
		3.1.1 Catal	ysis and activation energy	_	Meaning of catalysis
				_	Lowering of activation energy by enzymes in a reaction
		3.1.2 Mech kinet	nanism of action and ics	_	Lock-and-key model, affinity and Michaelis- Menten constant, and Lineweaver-Burk plot
		3.1.3 Cofacoent group	ctors: metal ions, zymes, and prosthetic ps	_	Definition, examples, and action
		3.1.4 Inhib comp	bitors: competitive and non- petitive	_	Definition, examples, and action
		3.1.5 Class	sification	_	Major types according to IUB system: hydrolases, lyases, transferases, isomerases, ligases/synthetases, oxydoreductases; examples of reactions
		3.1.6 Tech immo	nology: enzyme obilisation and biosensing	_	Meaning and examples of uses
	3.2	DNA and pr	rotein synthesis		
		3.2.1 DNA	as genetic material	_	Experiment of Avery and colleagues
		3.2.2 Gene polyp	e concept, one-gene-one- peptide hypothesis	_	Experiment of Beadle and Tatum
		3.2.3 DNA	replication	_	Experiment of Meselson and Stahl Processes involved

5

3.2.4 Protein synthesis

B. ENERGETICS

Topic

- 4. **Photosynthesis** (9 periods)
- 4.1 Light reaction

4.2 Dark reaction/Calvin cycle in C_3 and C_4 plants

- Transcription: processes of mRNA production
- Translation: processes of polipeptide production

Explanatory notes

- Reaction and detailed description
- Photoactivation of photosystem I and photosystem II
- Photolysis of water
- Production and roles of NADPH and ATP
- Cyclic and non-cyclic photophosphorylation
- Reaction and detailed description
- CO₂ fixation to RuDP
- Production of PGAL until the formation of carbohydrates
- Involvement in the formation of proteins and fatty acids
- Anatomical and physiological differences between leaves of C₃ and C₄ plants
- Krantz's anatomy
- Hatch-Slack pathway
- Crassulacean acid metabolism (CAM)
- Example: cactus
- 4.3 Factors limiting the rate of photosynthesis Wavelength and intensity of light, temperature, and carbon dioxide concentration
 - Compensation point

5. **Respiration** (7 periods)

- 5.1 Aerobiosis
 - 5.1.1 Glycolysis

- Glucose phosphorylation, fructose diphosphate production
- Splitting into phosphoglyceraldehyde and dihydroxyacetone phosphate
- Conversion of phosphoglyceraldehyde to pyruvate and production of ATP and NADH
- Substrate level phosphorylation

	5.1.2 Krebs cycle/tricarboxylic acid cycle/citric acid cycle	 Formation of acetyl coenzyme A, formation of citrate, reformation of oxaloacetate from citrate via α-ketoglutarate and succinate, with emphasis on the formation of NADH, FADH₂, and GTP, and release of carbon dioxide Calculations of total ATP production
	5.1.3 Electron transport system	 Electron flow from NADH/FADH₂ via flavoprotein, coenzyme Q, and cytochrome to oxygen with the production of ATP and water Effects of inhibitors (cyanide and carbon monoxide)
5.2	Anaerobiosis	 Differences between plants and animals: ethanol production in plants and lactic acid production in animals Use of fermentation in industry with examples
6.	Nutrition (2 periods)	
6.1	Autotroph	
	6.1.1 Chemosynthesis	 Concept with examples
	6.1.2 Photosynthesis	 Refer to topic 4 (Photosynthesis) Brief description of photosynthesis in bacteria
6.2	Heterotroph	 Concept with examples
	6.2.1 Holozoic6.2.2 Saprophytic6.2.3 Parasitic	

C. GASEOUS EXCHANGE, TRANSPORT, AND HOMEOSTASIS

Topic

Explanatory notes

- 7. **Gaseous exchange** (4 periods)
- 7.1 Animals
 - 7.1.1 Gaseous exchange in mammals Proce
 - Processes and structures involved
 - Haemoglobin
 - Transport of oxygen and carbon dioxide
 - Partial pressure and Bohr effect
 - Oxygen dissociation curves

	7.1.2 Breathing cycle	 Mechanism of breathing control
		– Chemoreceptor
		 Tidal volume, vital capacity, total lung capacity, inspiratory reserve volume, expiratory reserve volume, residual volume
7.2	Plants	
	7.2.1 Stomata	 Structure and functions
		 Mechanism of stomatal opening and closing based on the starch-sugar hypothesis and K⁺ ions accumulation hypothesis
8.	Transport (6 periods)	
8.1	Animals	
	8.1.1 Cardiac cycle	– Definition of systole and diastole
		 Changes in pressure and volume in aorta, left atrium, and left ventricle
	8.1.2 Control of heart beat	 Sinoatrial and atrioventricular nodes Sympathetic and parasympathetic nerves Detailed description of heart beat
	8.1.3 Cardiovascular diseases	 Hypertension, arterioschlerosis, and myocardial infarction
		- Meaning, causes, and prevention
8.2	Plants	
	8.2.1 Xylem and ascent of sap	 Uptake of water and ions by roots Transpiration
		 Root pressure and cohesion-tension theory
		 Mechanism of transport based on water potential
		- Pathways - apoplast, symplast, and vacuoles
	8.2.2 Phloem and translocation	 Mass flow/pressure flow hypothesis (Münch model), electro-osmosis, cytoplasmic streaming, and peristaltic waves
9.	Homeostasis (6 periods)	
9.1	Concept of homeostasis	 Definition and importance
		- Basis of control of biological systems
		 Positive and negative feedback mechanisms
		 Emphasis on temperature regulation (endothermic and ectothermic)

- Calculation of pressure in movement of fluid between blood capillaries and tissues Liver - Structure and functions in mammals - Cori cycle and ornithine cycle; emphasis on the entrance of amino groups into the cycle and the production of urea Osmoregulation 9.3.1 Animals (i) Kidney blood vessels

_

diabetes mellitus

- (ii) Antidiuretic hormone (ADH)
- Control of blood Na⁺ ions (iii) and pH
- 9.3.2 Plants
 - (i) Role of stomata in the regulation of water loss
 - Adaptation of plants to the (ii) environment

D. **CONTROL AND COORDINATION**

Topic

- 10. **Nervous system** (6 periods)
- 10.1 (a) Generation, characteristics, and transmission of impulse
 - (b) Synapses

- Detailed process of urine formation
- Structure and functions of nephron and related

Emphasis on control of blood glucose level

(role of insulin) and its relationship with

- Role and mechanism of action
- Mechanism of control
- Refer to topic **7.2.1** (Stomata)
- Morphology, anatomy, and physiology of xerophytes, hydrophytes, halophytes, and mesophytes, with examples

Explanatory notes

- Organisation of nervous system in mammals
- Formation of resting and action potentials
- Characteristics of nerve impulse and definition of related terms
- Mechanism of transmission and spread of impulse along the axon
- Structure of synapse and role of neurotransmitters such as acetylcholine and norepinephrine
- Mechanism of impulse transmission across synapses
- Comparison between mechanisms of impulse transmission across synapse and along the axon

9.2

9.3

	(c) Neuromuscular junctions	 Structure of neuromuscular junction and sarcomere
		 Roles of sarcoplasmic reticulum, Ca²⁺ ions, myofibril, and T tubule in muscle contraction
		 Sliding filament hypothesis
		 Mechanism of muscle contraction: roles of actin, myosin, and troponin
10.2	Autonomous nervous system in mammals	 Organisation of the sympathetic and parasympathetic nervous systems and their relationship with the central nervous system
		- Structure, functions, and examples
		 Comparison between the sympathetic and parasympathetic nervous systems
10.3	Drug abuse	 Mechanism of action of drug on nervous system and neuromuscular junctions
		 Examples: cocaine and kurare
11.	Hormone/chemical coordination (5 perio	ds)
11.1	Humans	
	11.1.1 Hormonal action	 Mechanism of hormone action via gene activation; examples of steroid hormones
		 Mechanism of non-steroid hormone via activation of cyclic AMP system (cascade effect); example: adrenaline
		 Comparison between the two action mechanisms
	11.1.2 Role of hormones in reproduction	 Site of production and role of hormones in oestrus cycle
		 Site of production and role of hormones during pregnancy
11.2	Plants	- Role of hormones in plant growth and development
	11.2.1 Auxin	 Growth of organs
	11.2.2 Gibberellin	 Root and shoot induction Apex and bud dominance
	11.2.3 Cytokinin	 Apex and bud dominance Seed dormancy
	11.2.4 Abscisic acid (ABA)	– Flowering
	11.2.5 Ethene	– Defoliation
		 Senescense Fruit ripening
		 Stomatal mechanism
		– Parthenocarpy
		 Interaction between hormones; example: apex dominancy

11.3	Phytochromes and the effect of light on flowering	 Definition of phytochrome Mechanism of phytochrome action Photoperiodism Role of phytochromes in photoperiodism and
		flowering
E.	IMMUNE SYSTEM	
	Topic	Explanatory notes
12.	Immunity (4 periods)	
12.1	Antibody, antigen, epitope, cell-mediated response, humoral immune response	 Definition and description
12.2	Lymphatic system	 Organisation of lymphatic system and formation of lymphatic fluid
		 Relationship between lymphatic system and immunity
12.3	Development of immunity	- Roles of macrophages, T-cells, and B-cells
		 Mechanism of cell-mediated response (T-cells) and humoral immune response (plasma cells)
12.4	Concept of self and non-self	- Foreign tissue/graft rejection by the body
		 Application of concept in medicine (organ transplant)
12.5	Acquired Immune Deficiency Syndrome (AIDS)	 Causes, causing agent (HIV), symptoms, and prevention of AIDS
		 Mechanism of HIV infection

F. REPRODUCTION, DEVELOPMENT, AND GROWTH

Topic

Explanatory notes

13. Reproduction (7 periods)

13.1 Sexual reproduction

13.1.1 Plants

- (i) Algae: Spirogyra
- (ii) Bryophyta: Marchantia
- (iii) Filicinophyta: Dryopteris
- (iv) Coniferophyta: Pinus
- (v) Angiospermophyta: *Caesalpinia*
- Refer to topic 22 (Biodiversity) for morphological characteristics
- Structure of sexual reproductive organ
- Life cycle with emphasis on sexual reproduction

- 13.1.3 Animals
 - (i) Ciliophora: *Paramecium*
 - (ii) Cnidaria: *Hydra*
 - (iii) Annelida: Pheretima
 - (iv) Arthropoda: Periplaneta
 - (v) Amphibia: Rana
 - (vi) Reptilia: Naja
 - (vii) Osteichthyes: Tilapia
 - (viii) Aves: Columba
 - (ix) Mammalia: Rattus

13.2 Asexual reproduction

- 13.2.1 Parthenogenesis
- 13.2.2 Pedogenesis
- 13.2.3 Polyembriony
- 13.2.4 Sporulation
- 13.2.5 Budding
- 13.2.6 Binary fision
- 13.2.7 Regeneration
- 13.2.8 Vegetative
- **14. Development** (6 periods)
- 14.1 Animals
 - 14.1.1 Embryology

14.1.2 Human foetal development

14.1.3 Parturition process in humans

- Refer to topic 22 (Biodiversity) for morphological characteristics
- Structure of sexual reproductive organ
- Life cycle with emphasis on sexual reproduction
- Refer to topic 22 (Biodiversity) for morphological characteristics
- Diversity of sexual reproductive systems and overall comparison
- Mechanism of fertilisation (internal and external)
- Oviparity, ovoviviparity, and viviparity
- Definition and examples only
- Aphis and Apis
- Amphioxus
- Fasciola
- Dryopteris and Plasmodium
- Hydra and Saccharomyces
- Amoeba
- Planaria
- Allium, Solanum, Yucca, Zingiber
- Brief description of major stages
- Beginning after fertilisation from cleavage to organogenesis (blastula and gastrula)
- Organ formation from ectoderm, mesoderm, and endoderm
- Roles of placenta, chorion, amniotic fluid, and allantois
- Roles of progesterone and oestrogen
- Roles of progesterone, oestrogen, oxytocin, and prolactin

Definition and example

14.2	Plants	
	14.2.1 Seed development	 Development of seeds and fruits after fertilisation
		 Structure of monocotyledonous and dicotyledonous seeds
	14.2.2 Seed germination	 Mobilisation of nutrients after imbibition (role of giberrelin)
15.	Growth (5 periods)	
15.1	Measurement	 Parameters and methods of measurement (suitabilities and problems)
15.2	Types of growth curve	 Absolute growth curve Absolute growth rate curve Relative growth rate curve
15.3	Growth pattern	 Limited growth (human) Unlimited growth (perennial plants/woody saka) Allometric growth (human) Isometric growth (fish) Intermittent growth (insect)
15.4	Ecdysis and metamorphosis	 Definition Role of hormones (neurosecretion, juvenile hormone, and ecdysone) Ecdysis and metamorphosis in insects
15.5	Dormancy	- Concept, importance, and examples
	15.5.1 Animals	– Hibernation, aestivation, and diapause
	15.5.2 Plants	 Seed dormancy Factors affecting seed dormancy and methods of overcoming them
G.	GENETICS	
	Topic	Explanatory notes
16.	Transmission genetics (10 periods)	
16.1	Mendelian genetics	– Definition of the terms gamete, gene, allele,

dominant and recessive alleles, homozygote, heterozygote, fenotype, genotype, filial generation (P_1 , P_2 , F_1 , F_2), types of crosses (test cross, back cross, reciprocal cross, selfing), and pure breeding

		 Mendel's experiment on monohybrid and dihybrid crosses/inheritance Characteristics of pea plants used by Mendel
	16.1.1 Monohybrid	 Monohybrid cross and its results Mendel's first law (Law of Segregation) and its relation to meiosis Calculations of genotypic and phenotypic ratios (Punnett square method)
	16.1.2 Dihybrid	 Dihybrid cross and its results Mendel's second law (Law of Independent Assortment) and its relation with meiosis Calculations of genotypic and phenotypic ratios until F₂ generation (Punnett square and branch/fork methods)
16.2	Modification of Mendelian genetics	 Crosses that result in ratios differing from the classic Mendelian 3:1 and 9:3:3:1 ratios
	16.2.1 Codominance	 Definition Example of inheritance: MN blood group in humans Calculations of genotypic and phenotypic ratios
	16.2.2 Incomplete dominance	 Definition Example of inheritance: <i>Antirrhinum</i> (snapdragon) flower color Calculations of genotypic and phenotypic ratios
	16.2.3 Multiple alleles	 Definition Example of inheritance: human ABO blood group Calculations of genotypic and phenotypic ratios
	16.2.4 Lethal genes	 Definition Example of inheritance: coat color in mice Calculations of genotypic and phenotypic ratios
	16.2.5 Polygenes	DefinitionExample of inheritance: height in humans
	16.2.6 Linked genes	 Definition of linked genes and sex-linked genes

		 Effect of crossing-over on ratio of dihybrid crosses
		– Parental and recombinant phenotypes
		 Examples: <i>Drosophila</i> eye color and haemophilia in humans
		 Calculations of genotypic and phenotypic ratios
		 Pedigree analysis
		 Sex determination in humans
	16.2.7 Epistasis	 Definition and examples only
16.3	Genetic mapping	 Calculations of distance between two loci based on percentage of crossing-over
		- Examples of calculations for Drosophila
		 Determining the relative position of a gene on a chromosome based on percentage of crossing-over
17.	Mutation (4 periods)	
17.1	Classification	Spontaneous and inducedExamples of mutagens
17.2	Gene mutation	– Mutation at DNA level
	17.2.1 Substitution	DefinitonExample: sickle-cell anaemia
	17.2.2 Insertion/Addition	DefinitionFrameshift mutation
	17.2.3 Deletion	 Definition Frameshift mutation Example: thalassaemia major
	17.2.4 Inversion	– Definition
17.3	Chromosomal mutation	- Chromosomal aberration
	17.3.1 Change in chromosome number	Aneuploidy and euploidy/polyploidyDefinition of autosome and sex chromosome
		Terms Meaning

Terms	Meaning
Aneuploidy	$2n \pm$ chromosome
Monosomy	2n - 1 chromosome
Trisomy	2n + 1 chromosome
Tetra-, penta-,	2n + 2, 2n + 3,

				Terms	Meaning	
				Euploidy Diploidy Triploidy Tetra-, penta-, Polyploidy	Multiple of n 2n 3n 4n, 5n, 3n, 4n, 5n,	
				Autopolyploidy	Multiplication due to the same genome	
				Allopolyploidy	Multiplication due to different genome	
		(i)	Aneuploidy	 Definition Non-disjunction durin Abnormalities of auto Monosomy – resureta Trisomy: Down system Abnormalities of sex of Klinefelter syndrom Turner syndrome (eta) 	ng meiosis some number alting in sterility and arded growth ndrome (trisomy 21) chromosome number me (47,XXY) 45,X)	
		(ii)	Euploidy/poliploidy	 Definition of euploidy autopolyploidy, and a Examples in plants 	//polyploidy, llopolyploidy	
	17.3.2	Chan struct	ge in chromosome ture			
		(i)	Inversion	– Definition		
		(ii)	Translocation	– Definition		
		(iii)	Deletion	– Definition		
		(iv)	Duplication/multiplication	– Definition		
18.	Popula	tion g	genetics (3 periods)			
18.1	Concept of gene pool		ene pool	 Concept of gene pool, frequencies in a popul 	 Concept of gene pool, allele and genotype frequencies in a population 	
				 Relationship between evolution 	population genetics and	
18.2	Hardy-	Weinł	berg law	- Genetic equilibrium a	nd allele frequency	
				 Requirements for gene Large-sized popula Random mating No mutation No migration 	etic equilibrium ation	
				 Hardy-Weinberg equi 	librium:	

- $p^{2} + 2pq + q^{2} = 1$ and p + q = 1
- Calculations of allele and genotype frequencies in a population

19. Gene regulation and expression (2 periods)

19.1	Lactose operon	 Experiment of Jacob and Monod Induced and constitutive enzyme production Components of lactose operon and function of each component Components of regulator genes: an inducer, a promoter, and an operator Components of structural genes: genes <i>Z</i>, <i>Y</i>, and <i>A</i> Effect of presence or absence of lactose on lactose operon
20.	Modern genetics technology (8 periods)	
20.1	Genetic engineering/recombinant DNA technology	– Definition
	20.1.1 Restriction endonuclease/ restriction enzymes	 Definition, importance (examples: <i>Eco</i>RI and <i>Bam</i>HI), and nomenclature Restriction site: palindrome
	20.1.2 Vectors	 Definition Properties of cloning vectors Plasmid Phage λ (bacteriophage)
	20.1.3 Cloning	 Definition Steps in cloning processes Isolation of target DNA and vector DNA Restriction of target DNA and vector DNA by restriction endonuclease/enzymes Insertion of target DNA into vector DNA Ligation of target DNA to vector DNA by DNA ligase Transformation/transduction of recombinant DNA into host cells Amplification Screening for transformants Example: insulin production by <i>E. coli</i>
20.2	Gene libraries and gene banks	 Definition and use Gene libraries: genomic and cDNA Construction of genomic and cDNA libraries

20.3	Use of recombinant DNA technology	 Definition of transgenic organisms Bacteria Insulin producers Oil composers Nitrogen fixation Transgenic plants Plants resistant to herbicide Plants resistant to insect pests Transgenic animals Producers of α-1-antitrypsin enzyme in milk Producers of tissue plasminogen activator in milk Producers of human growth hormone in milk
20.4	Other uses	 Definition and brief description
	20.4.1 Genetic screening	 Amniocentesis and chorionic villus sampling (CVS)
	20.4.2 Gene therapy	 Restoration of adenosine deaminase enzyme in infants
	20.4.3 DNA fingerprinting	 Use in forensic science in identification of individuals (criminal, death, and paternity suit Identification of carriers of defective genes
20.5	Ethics of modern genetics	 Advantages and disadvantages of recombinant DNA technology

H. TAXONOMY, BIODIVERSITY, AND THEORY OF EVOLUTION

Topic		Explanatory notes	
21.	Taxonomy (3 periods)		
21.1	Purpose and importance of taxonomy	- Brief description	
21.2	Classification system	Artificial classification systemNatural classification system	
21.3	Taxonomic hierarchy	 Taxonomic rank Meaning of taxonomic rank Examples of taxonomic hierarchy for plants and animals 	

- 21.4 Dichotomous keys M – U ic
- 21.5 Biological nomenclature
- 22. Biodiversity (16 periods)
- 22.1 Five kingdom systems
 - 22.1.1 Kingdom Prokaryotae: viruses and bacteria
 - 22.1.2 Kingdom Protoctista:
 - (i) Chlorophyta: one example of unicellular and one example of filamentous
 - (ii) Phaeophyta: one example of fucoid
 - (iii) Rhizopoda: Amoeba
 - (iv) Ciliophora: Paramecium
 - (v) Zoomastigina: Euglena
 - 22.1.3 Kingdom Fungi: Mucor

22.1.4 Kingdom Plantae:

- (i) Bryophyta: Marchantia
- (ii) Filicinophyta: Dryopteris
- (iii) Coniferophyta: Pinus
- (iv) Angiospermophyta: Zea mays and Helianthus

22.1.5 Kingdom Animalia:

- (i) Porifera: Sycon
- (ii) Cnidaria: Obelia
- (iii) Platyhelminthes: Taenia
- (iv) Nematoda: Ascaris
- (v) Annelida: Pheretima
- (vi) Arthropoda:
 Insecta: Periplaneta
 Arachnida: Lycosa
 Crustacea: Penaeus
 Chilopoda: Lithobius
 Diplopoda: Iulus
 Merostomata: Limulus
- (vii) Mollusca: *Helix*
- (viii) Echinodermata: *Holothuria*

- Methods of constructing dichotomous keys
- Use of dichotomous keys for the purpose of identification of organisms
- Examples of dichotomous keys
- Binomial system with examples
- Definition of biodiversity
- Morphological characteristics with examples
- Morphological characteristics at the phylum level

- Morphological characteristics at the kingdom level
- Morphological characteristics at the phylum level
- Morphological characteristics at the phylum and class levels
- Morphological characteristics at the phylum and class levels

	 (ix) Chordata: Chondrichthyes: Carcharodon Osteichthyes: Tilapia Amphibia: Rana Reptilia: Naja Aves: Columba Mammalia: Rattus 	- Morphological characteristics at the phylum and class levels
22.2	Biodiversity in Malaysia	– Definition
	22.2.1 Ecosystem diversity	 Types of ecosystem found in Malaysia: tropical forest, mangrove swamp forest, and coastal
	22.2.2 Species diversity	 Diversity of plant (flora) and animal (fauna) species with examples: ferns and insects
	22.2.3 Genetic diversity	 Genetic variation between population in humans, and plant and animal species
22.3	Threat of extinction to biodiversity in Malaysia	 Factors which threaten the extinction of biodiversity such as excessive and illegal logging, pollution of rivers and beaches, fish bombing, and the exploitation of mangrove in an unsustainable way
		 Implications of the extinction of ecosystem, species, and genetic diversities on human life and the environment
22.4	Conservation of biodiversity	 Steps in the conservation of biodiversity in terms of ecosystem, species, and genetics
	22.4.1 In situ conservation	– Example: Taman Negara
	22.4.2 <i>Ex situ</i> conservation	 Examples: botanical garden, zoo, gene and germplasm banks
23.	Variation and theory of evolution (10 pe	eriods)
23.1	Variation	- Definition and importance
	23.1.1 Continuous and discontinuous variation	– Definition, differences, and examples
	23.1.2 Source	
	(i) Genetic	 Sexual reproduction

Random assortment of homologous chromosomes during meiosis

		 Crossing-over, chromosome mutation, gene mutation, polygenes, dominant and recessive genes/alleles
		– Hybridisation
	(ii) Environment	 Factors and influences
23.2	Selection	 Definition, description, importance, and examples Relationship between selection and variation
	23.2.1 Natural selection	 Stabilising selection Directional selection Disruptive selection Sexual selection Polymorphism
	23.2.2 Artificial selection	 Breeding of farm animals and crop plants Controlled/selective breeding (inbreeding, outbreeding) Human and animal sperm banks
23.3	Speciation	 Definition, description, importance, and examples
	23.3.1 Concept of species	 Problems in defining species
	23.3.2 Speciation process	 Formation of new species Isolation, genetic drift, hybridisation, and adaptive radiation
23.4	Evolution	 Definition, description, importance, and examples
	23.4.1 Lamarck's Theory	 Theory and examples
	23.4.2 Darwin-Wallace's Theory	 Theory and examples
	23.4.3 Evidence supporting theory of evolution	 Paleontology Geographical distribution Comparative anatomy Comparative embryology Biochemistry DNA homology

I. ECOLOGY

	Topic	Explanatory notes		
24.	Ecosystem (6 periods)			
24.1	Organisation of life	- Concept, hierarchy, and interaction		
	24.1.1 Components of life: organisms, populations and communities, ecosystems, biomes, and biospheres	Definition and examplesEmphasis on the dynamism of ecosystems		
	24.1.2 Niche and habitat	 Definition and examples Relationship between niche, habitat, and environment 		
24.2	Biogeochemical cycles	 Sulphur and phosphorus cycles 		
24.3	Energy	- First and second laws of thermodynamics		
	24.3.1 Flow	 Definition, one example of ecosystem: pond/ forest 		
	24.3.2 Transfer	 Efficiency of energy transfer by producers, consumers, and composers 		
		- One example of ecosystem: pond/forest		
25.	Quantitative ecology (12 periods)			
25.1	Population ecology	 Biotic potential Natality Mortality Migration Survivorship <i>r</i> and <i>K</i> strategies Population growth Factors limiting population size and distribution Liebig's law Shelford's law 		
25.2	Applied ecology	 Carrying capacity Management and conservation of ecosystems Sustainable development; examples: forestry, agriculture, and fishery 		
25.3	Quantitative methods			
	25.3.1 Sampling theories	 Definition, description, importance, and examples 		
	(i) Central limit theorem	 Practical application 		
	(ii) Optimum sample size	 Practical application 		

25.3.2 Types of estimation

Examples and calculations

- (i) Absolute
- (ii) Relative

25.3.3 Sampling methods – Quadrat – Line transect

- Belt transect
- Capture-recapture/mark-release-recapture method

25.3.4 Sampling parameters

- Frequency
- Density
- Coverage

Practical Syllabus

School-based Assessment of Practical (Paper 3)

School-based assessment of practical work will only be carried out during the school term of form six for candidates from government and private schools which have been approved by the Malaysian Examinations Council to carry out the school-based assessment. *Individual private candidates, candidates from private schools which have no permission to carry out the school-based assessment of practical work, candidates who repeat upper six (in government or private schools), and candidates who do not attend classes of lower six and upper six for two consecutive years (in government or private schools) are not allowed to take this paper.*

The Malaysian Examinations Council will specify 13 compulsory experiments (including three projects) to be carried out by candidates and to be assessed by subject teachers in schools. Candidates are required to carry out the projects individually or in groups as stipulated. Details of the topic, aim, theory, apparatus, and method of each of the experiments will be compiled and distributed to all schools.

Students should be supplied with a work scheme before the day of the compulsory experiment so as to enable them to plan their practical work. Each experiment is expected to last one school double period. Assessment of the students' practical work will be done by the teacher during the practical session and will also be based on the students' practical report. The assessment should comply with the assessment guidelines prepared by the Malaysian Examinations Council.

Written Practical Test (Paper 4)

Individual private candidates, candidates from private schools which have no permission to carry out the school-based assessment of practical work, candidates who repeat upper six (in government or private schools), and candidates who do **not** attend classes of lower six and upper six for two **consecutive** years (in government or private schools) are required to take this paper.

Two structured questions on routine practical work will be set. The Malaysian Examinations Council will not be strictly bound by the syllabus in setting questions. Where appropriate, candidates will be given sufficient information to enable them to answer the questions. Only knowledge of theory within the syllabus and knowledge of usual laboratory pratical procedures will be expected.

Questions to be set will test candidates' ability to

- (*a*) record readings from diagrams of apparatus;
- (b) describe, explain, suggest, and comment on the experimental arrangements, techniques, and procedures;

- (c) interpret, draw conclusion from, and evaluate observations and experimental data or diagrams of specimens;
- (d) suggest precautions or safety measures;
- (e) use theories to explain the results of experiments;
- (f) perform simple calculations based on experiments.

Form of Examination

Candidates are required to enter for Papers 1, 2, and either Paper 3 or Paper 4.

Paper	Format of paper	Marks	Duration
Paper 1	50 compulsory multiple-choice questions are to be answered.	50 (to be scaled to 60)	1¾ hours
Paper 2	 Section A: 4 compulsory short structured questions are to be answered. Section B: 4 questions are to be answered out of 6 essay questions. 	40 60 (15 per question) Total: 100 (to be scaled to 120)	2½ hours
Paper 3	School-based Assessment of Practical: 13 compulsory experiments are to be carried out.	20	School term
Paper 4	Written Practical Test: 2 compulsory structured questions are to be answered.	30 (to be scaled to 20)	1 hour

Reference Books

- 1. Audesirk, T., Audesirk, G. & Bayers, B.E., Biology: Life on Earth, (6th ed.), Prentice-Hall, 2002.
- 2. Campbell, N. A. & Reece, J. B., *Biology*, (6th ed.), Benjamin Cummings, 2002.
- 3. Clegg, C. J. & Mackean, D. G., *Advanced Biology: Principles and Applications*, John Murray, 2000.
- 4. Green, N. P. O., Stout, G. W., & Taylor, D. J., *Biological Science 1 & 2* (2nd ed.), Cambridge University Press, 1990.
- 5. Jones, M. & Jones, G., Advanced Biology, Cambridge University Press, 1997.
- 6. Solomon, E., P., Berg, L. R., & Martin, D. W., Biology, (6th ed.), Thomson Learning, 2002.
- 7. Starr C. & Taggart R., *Biology: The Unity and Diversity of Life*, (9th ed.), Von Hoffmen Press, 2000.